PDGF-B-mediated downregulation of miR-21: new insights into PDGF signaling in glioblastoma.
نویسندگان
چکیده
Glioblastoma (GBM) is a highly heterogeneous type of tumor characterized by genomic and signaling abnormalities affecting pathways involved in control of cell fate, including tumor-suppressor- and growth factor-regulated pathways. An aberrant miRNA expression has been observed in GBM, being associated with impaired cellular functions resulting in malignant transformation, proliferation and invasion. Here, we demonstrate for the first time that platelet-derived growth factor-B (PDGF-B), a potent angiogenic growth factor involved in GBM development and progression, promotes downregulation of pro-oncogenic (miR-21) and anti-oncogenic (miR-128) miRNAs, as well as upregulation/downregulation of several miRNAs involved in GBM pathology. Retrovirally mediated overexpression of PDGF-B in U87 human GBM cells or their prolonged exposure, as well as that of F98 rat glioma cells to this ligand, resulted in decreased miR-21 and miR-128 levels, which was associated with increased cell proliferation. Furthermore, siRNA-mediated PDGF-B silencing led to increased levels of miR-21 and miR-128, while miRNA modulation through overexpression of miR-21 did not alter the levels of PDGF-B. Finally, we demonstrate that modulation of tumor suppressors PTEN and p53 in U87 cells does not affect the decrease in miR-21 levels associated with PDGF-B overexpression. Overall, our findings suggest that, besides its role in inducing GBM tumorigenesis, PDGF-B may enhance tumor proliferation by modulating the expression of oncomiRs and tumor suppressor miRNAs in U87 human GBM cells.
منابع مشابه
PDGF induced microRNA alterations in cancer cells
Platelet derived growth factor (PDGF) regulates gene transcription by binding to specific receptors. PDGF plays a critical role in oncogenesis in brain and other tumors, regulates angiogenesis, and remodels the stroma in physiologic conditions. Here, we show by using microRNA (miR) arrays that PDGFs regulate the expression and function of miRs in glioblastoma and ovarian cancer cells. The two P...
متن کاملPlatelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors.
Glioblastoma multiforme, the most common form of malignant brain tumor,is resistant to all forms of therapy and causes death within 9-12 months of diagnosis. Glioblastomas are known to contain numerous genetic and physiological alterations affecting cell survival and proliferation; one of the most common alterations being platelet-derived growth factor (PDGF) autocrine signaling characterized b...
متن کاملMay Play a Role in the Development of Brain Tumors Cells : Evidence That the Novel PDGF-C and PDGF-D Ligands Regulates Survival and Mitogenic Pathways in Glioblastoma Platelet-derived Growth Factor (PDGF) Autocrine Signaling
Glioblastoma multiforme, the most common form of malignant brain tumor, is resistant to all forms of therapy and causes death within 9–12 months of diagnosis. Glioblastomas are known to contain numerous genetic and physiological alterations affecting cell survival and proliferation; one of the most common alterations being platelet-derived growth factor (PDGF) autocrine signaling characterized ...
متن کاملPlatelet-derived growth factor-BB enhances MSC-mediated cardioprotection via suppression of miR-320 expression.
Delivery of bone marrow-derived mesenchymal stem cells (MSCs) to myocardium protects ischemic tissue through the paracrine release of beneficial angiogenic and cytoprotective factors. Platelet-derived growth factor (PDGF)-BB, a potent mitogen of MSCs, is involved in the pathophysiology of ischemic heart disease. However, the role(s) of PDGF in MSC-mediated cardioprotection remains unknown. Here...
متن کاملMiR‐339 inhibits proliferation of pulmonary artery smooth muscle cell by targeting FGF signaling
Pulmonary artery hypertension (PAH) is a fatal disorder. Recent studies suggest that microRNA (miRNA) plays an important role in regulating proliferation of pulmonary artery smooth muscle cells (PASMC), which underlies the pathology of PAH However, the exact mechanism of action of miRNAs remains elusive. In this study, we found that miR-339 was highly expressed in the cardiovascular system and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 21 23 شماره
صفحات -
تاریخ انتشار 2012